RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia.

نویسندگان

  • Olivier Garnier
  • Vincent Serrano
  • Sandra Duharcourt
  • Eric Meyer
چکیده

The germ line genome of ciliates is extensively rearranged during development of the somatic macronucleus. Numerous sequences are eliminated, while others are amplified to a high ploidy level. In the Paramecium aurelia group of species, transformation of the maternal macronucleus with transgenes at high copy numbers can induce the deletion of homologous genes in sexual progeny, when a new macronucleus develops from the wild-type germ line. We show that this trans-nuclear effect correlates with homology-dependent silencing of maternal genes before autogamy and with the accumulation of approximately 22- to 23-nucleotide (nt) RNA molecules. The same effects are induced by feeding cells before meiosis with bacteria containing double-stranded RNA, suggesting that small interfering RNA-like molecules can target deletions. Furthermore, experimentally induced macronuclear deletions are spontaneously reproduced in subsequent sexual generations, and reintroduction of the missing gene into the variant macronucleus restores developmental amplification in sexual progeny. We discuss the possible roles of the approximately 22- to 23-nt RNAs in the targeting of deletions and the implications for the RNA-mediated genome-scanning process that is thought to determine developmentally regulated rearrangements in ciliates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nowa1p and Nowa2p: Novel Putative RNA Binding Proteins Involved in trans-Nuclear Crosstalk in Paramecium tetraurelia

BACKGROUND The germline genome of ciliates is extensively rearranged during development of a new somatic macronucleus from the germline micronucleus, a process that follows sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) and multicopy transposons are eliminated, whereas cellular genes are amplified to approximately 800 n. For a subset of IESs, introduc...

متن کامل

TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements

Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, th...

متن کامل

Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs...

متن کامل

Ku-Mediated Coupling of DNA Cleavage and Repair during Programmed Genome Rearrangements in the Ciliate Paramecium tetraurelia

During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitt...

متن کامل

A Mendelian mutation affecting mating-type determination also affects developmental genomic rearrangements in Paramecium tetraurelia.

In Paramecium tetraurelia, mating type is determined during the differentiation of the somatic macronucleus from a zygotic nucleus genetically competent for both types, O and E. Determination of the developing macronucleus is controlled by the parental macronucleus through an unknown mechanism resulting in the maternal inheritance of mating types. The pleiotropic mutation mtFE affects macronucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 17  شماره 

صفحات  -

تاریخ انتشار 2004